DNA Repair and Cancer

RPN 530 Oncology for Scientists Lecture

Amanda Zunic Thomas Melendy, PhD Depts: Microbiology & Immunology, and Biochemistry, UB SOM

Office: 213 BRB, UB SOM TMelendy@buffalo.edu

DNA Repair and Cancer

Suggested additional resources:

Weinberg RA (2007) *The Biology of Cancer*. Garland Science, New York, (Chapter 12).

Friedberg EC, Walker GC, Siede W, Wood RD, Shultz RA, Ellenberger T (2006) *DNA Repair and Mutagenesis*, ASM Press, Washington, DC.

DNA Repair and Cancer

RNA and proteins can be totally degraded when damaged, and re-synthesized when needed

DNA is not totally degraded when damaged - repaired at a nucleotide level or in small patches

DNA repair maintains integrity of the genetic information

- DNA -> RNA -> protein

Importance of DNA Repair

All organisms, from bacteria to yeast to humans, have multiple DNA repair mechanisms and pathways

Many of the genes, proteins and repair pathways are evolutionarily conserved

 \simeq 150 human genes encode DNA repair proteins, and many more involved in DNA damage response (DDR)

Defects in DNA Repair can cause Cancer

DNA Repair

Types of DNA damage

Types of DNA repair pathways

DNA damage, repair, and cancer

DNA Repair

Types of DNA damage

Errors in DNA synthesis

Spontaneous/endogenous sources

Exogenous sources

Endogenous Cellular Events threaten DNA Integrity

 Errors in DNA Replication

Biochemical Processes

Errors cause Mutations if not Repaired

Replication Errors in the Genome

DNA polymerase delta (δ) copies DNA with high fidelity (proofreading mutant D400A) - Low error rate in copying: ~1 error/10⁵ bp

Human genome has ~6x10⁹ bp - 6x10⁹ / 1x10⁵ = ~60,000 errors!

How does the cell prevent/correct these errors to minimize the mutation rate?

Proofreading Errors in the Genome

DNA polymerase δ + proofreading function _ ~1 error in 10^7 bp

Human genome has $\sim 6x10^9$ bp - $6x10^9 / 1x10^7 = \sim 600$ errors

How does the cell deal with these errors?

Excision Repair

Three types:

- Mismatch repair (MMR)
- Nucleotide excision repair (NER)
- Base excision repair (BER)

What do they have in common?

- Excise the damaged or mismatched DNA strand
- Synthesize based on the complementary strand
- Ligate the nick to complete synthesis

Proofreading Errors in the Genome

DNA polymerase δ + proofreading function $_{-\,^{\sim}1\,error\,in\,\,10^{7}\,bp}$

DNA polymerase δ + proofreading + MMR $_{-}$ ~1 error in 10 9 bp

Human genome has 6x10⁹ bp

- $6x10^9$ bp / 10^9 bp = ~6 errors in genome

DNA can break during Replication

Breaks occur near replication forks

Up to ~ 10 breaks per cell per S phase

Breaks may result after trying to replication past a ssDNA break (nick) or DNA "damage"

Failure to properly repair breaks can lead to cell death, or to DNA translocations, which can lead to cancer

Bypass of DNA Damage by DNA Replication Forks

Polymerase	Gene	Catalytic	subunit		Accessory subunits (kDa)	3'-+5' exonuclease	Fidelity	Primary function
Pol a	POLAI	1462 aa	1 1111		49 58 70 PRIMI PRIM2A PRIMA2	No	10-4-10-5	RNA and/or DNA prime
Pol ß	POLB	335 aa			None	No	5 × 10 ⁻⁴	Base-excision repair
Poly	POLGI	1239 aa			SS PCKG2	Yes	10-5	Mitochondrial DNA replication and repair
Polið	POLDI	1107 aa			50 68 12 POLD2 POLD3 POLD4	Yes	10-1-10+	Lagging-strand synthesis DNA repair
Pol e	POLE	2286 aa	шп		S9 12 17 POLEZ POLEA POLES	Yes	10-1-10-2	Leading-strand synthesi
Polymer	ase	Gene	Family	Other na	mes	Proposed	function	
η (eta)		POLH	Y	RAD30A	KPV	Bypass UV	lesions	
t (iota)		POLI	Y	RAD30B		Bypass syn	thesis	
ĸ (kappa)		POLK	Y	DINB1		Bypass syn	thesis	
λ (lambda	a)	POLL	х	POL4 (in S	accharomyces cerevisiae) Base-excis	ion repair,	NHEJ
μ (mu)		POLM	х	-	1106x412	NHEJ		
θ (theta)		POLQ	A	Mus308 (in	Drosophila melanogast	er) DNA repai	r:	
ζ (zeta)		POLZ	В	REV3		Bypass syn	thesis	
Rev1		REV1	Y	REV1L		Incorporat	ion of dC	opposite abasic site:
v (nu)		POLN	А	-		Unknown, I signature, 0	but Pol v h G-dTMP m	as a unique error

Oxidation

Reactive Oxygen species:

- Hydrogen peroxide: HOOH
- Oxygen free radicals: O-O•, HO•, O•

May arise from:

- Mitochondria, peroxisomes, inflammation

Can damage DNA bases

- Oxidized bases
- Form abasic sites
- DNA breaks: ss- or ds-DNA break

Exogenous agents can damage DNA

UV: ultra-violet radiation

Alkylating agents

X-rays: ionizing radiation - double-strand break (DSB)

UV DNA damage: mutagen & carcinogen

Pyrimidine dimers:

- 60% T-T, 30% C-T, 10% C-C

Mutagenic: keratoses, basal skin carcinomas

- C-C dimers are the most mutagenic: C-C -> T-T
- T-T dimers are the least mutagenic, best repaired

Carcinogen: squamous cell carcinomas

- Incidence doubles every 10^o decline in latitude
- Peaks at the Equator, where cumulative UV highest

DNA alkylating agents

Many are known cytotoxics, mutagens and carcinogens

- Which interfere with DNA replication

Some are agents used in laboratory studies

- MMS, methyl methane sulfonate
- ENU, ethyl nitrosourea
- Cytotoxic drugs used in chemotherapy
 - Melphalan, chlorambucil, others

Environmental agents

- MeCl: microorganisms, algae, burning biomass
- Streptozotocin: MNU-derivative from resistant S.
- achromogenes

Impact of DNA alkylation

7-methyl-guanine is unstable

- Spontaneously depurinates -> abasic site
- Blocks replication, cytotoxic if not repaired

3-methyl-adenine blocks replication

- Cytotoxic if not repaired
- 6-ethyl-guanine is mutagenic, not cytotoxic
 - Mispairs with T in replication, then T templates A
 - eG:C -> eG:T -> A:T mutant DNA
 - G:C -> G:C -> G:C wtDNA, if repaired
 - 1st 2nd :S phases

Excision Repair

Mismatch repair

Nucleotide excision repair

Base excision repair

Base Excision Repair

Many variations, depending on the nature of the damage, glycosylase, and nature of DNA polymerase

All have the following steps in common:

- Removal of the incorrect base by an appropriate DNA N-glycosylase to create an AP site
- An AP endonuclease nicks on the 5' side of the AP site to generate a 3'-OH terminus
- Extension from the 3'-OH by a DNA polymerase,
- which replaces the AP site with correct nucleotide - Ligation of the DNA nick

13

Acrony m	Full Name	Size (aa)	AP Lyase	Substrates
UNG	Uracil DNA N-Glycosylase	313	No	ssU>U:G>U:A, 5-FU
TDG	Thymine DNA Glycosylase	410	No	U:G>ethenocytosine:G>T:G
UDG2	Uracil DNA Glycosylase 2	327	No	U:A
SMUG1	Single-strand-selective Monofunc- tional Uracil-DNA Glycosylase 1	270	No	ssU≻U:A, U:G
MBD4	Methyl-CpG-Binding Domain 4	580	No	U or T in U/TpG:5-meCpG
MPG	Methyl Purine DNA Glycosylase	293	No	3-meA, 7-meA, 3-meG, 7-meG
MYH	MutY Homolog	535	Yes (±)	A:G, A:8-oxoG
OGG1	8-Oxo-Guanine Glycosylase 1	345	Yes	8-oxoG:C
NTH1	Endonuclease Three Homolog 1	312	Yes	T-glycol, C-glycol, formamidopyrimidine

Base Excision Repair & Cancer

MutYH: the first BER gene associated with a human cancer syndrome

MutYH excises A across from 8-oxoG:A bp

Bialleic germline mutations predispose to colorectal adenomas and carcinomas

Association with APE1, PCNA, RPA, & replication foci suggests MutYH has a role in long-patch BER

Direct Repair aka Direct Reversal of DNA Damage

Excision Repair

Mismatch repair

Nucleotide excision repair

 Fixes a wide variety of DNA damage: UV & bulky adducts distorting the DNA helix

Base excision repair

Nucleotide Excision Repair

In all organisms, NER involves the following steps:

- Damage recognition
- Binding of a multi-protein complex at the damage site
- Double incision of the damaged strand several nt away from the damaged site, both 5' and 3' sides
- Removal of the damage-containing oligonucleotide from between the two nicks
- Filling of the resulting gap by a DNA polymerase
- Ligation of the nick in the DNA

Nucleotide Excision Repair

Two Types:

Global Genome NER

- Works on both DNA strands, except activelytranscribed strands

Transcription-coupled NER

- Works on actively-transcribed DNA strands only

DNA double-strand breaks (DSBs)

Unrepaired DSBs are lethal or mutagenic

Sources: X-rays, chemicals, free radicals, replication across from a DNA SSB

Triggers recruitment of repair factors - Homology-directed or End-joining

Triggers cell-cycle arrest via checkpoint kinase ATM (ataxia telangiectasia-mutated)

DSBs lead to GENOMIC INSTABILITY!

DNA strand break repair

Essential for cell survival and genome stability

Multiple pathways

- DSB repair by Homologous Recombination
- DSB repair by Non-Homologous End Joining
- Non-ligateable SSB repair

Homology-directed repair

Non-mutagenic

- SDSA and DSB repair
- Require: Rad51, Rad52, and mediator proteins Rad54, Rad55, Rad57

Mutagenic

- Single-strand annealing
- Occurs at repeated DNA sequences
- Requires Rad52 and Rad59

DSB repair & cancer

Inherited predispositions to cancer

- ATM, MRE11
- NBS1: Nijmegen Breakage Syndrome
- BRCA1, BRCA2: homology-directed repair
- BLM, WRN: DNA helicases involved in repair
- Null mutations: embryonic lethal (except ATM)
 - Result in gross chromosomal rearrangements
 - SSB -> DSB during DNA replication

Repair defects in Familial Cancer

Name of syndrome	Name of gene	Cancer phenotype	Enzyme or process affected
HNPCC XP ^b	(4-5 genes) ^a (8 genes) ^b	colonic polyposis UV-induced skin cancers	mismatch repair enzymes nucleotide-excision repair
AT ^c AT-like disorder ^c Familial breast, ovarian cancer	ATM MRE11 BRCA1, BRCA2 ^d	leukemia, lymphoma not yet determined breast and ovarian carcinomas	response to dsDNA breaks dsDNA repair by NHEJ homology-directed repair of dsDNA break
Werner	WRN	several cancers	exonuclease and DNA helicase*, replication
Fanconi anemia Niimegen break ^g	(9 genes) ¹ NBS	AML, HNSCC mostly lymphomas	repair of DNA cross-links and ds breaks processing of dsDNA breaks. NHEJ
LI-Fraumeni	1P53	multiple cancers	UNA damage alarm protein
ive distinct MMR genes	are transmitted as mu ther MMR genes—MSI	tant alleles in the human germ line. Two H6 and PMS2—are involved in a small m	o MMR genes—MSH2 and MLH1—are commonly umber of cases: a fifth gene, PMS1, may also be
vive distinct MMR genes volved in HNPCC: two o volved in a small numb (eroderma pigmentosuu e eighth gene, XPV, encc taxia telangiectasia, am dutanta germ-line alleles in exonuclease digests [line genes have been cic te BACH1 protein, the pu the NBS1 protein (terme CNNA breakt: The nhanon	entrains are transmitted as mut ther MMR genes—MSI er of cases. m, at least eight distim does DNA polymerase all number of cases. or & BRCA1 and BRCA2 DNA or RNA from one oned and at least eleve striner of BRCA1. di nibrin forms a physic thores of natients with	tan talleles in the human germ line. Tw 46 and PMS2—are involved in a small n ct genes, seven of which are involved in 74, and a seven of which are involved in together may account for 10–20% of idd ned inward, a DNA helicase unvinds do incomplementation groups have been inclosed to the seven of the seven of the seven indices on the seven of the seven of the seven the seven of the seven of the seven of the seven the seven of the seven of the seven of the seven the seven of th	Minister signaling of the sample Minister signaling of the sample imber of cases; a fifth gane, PMST, may also be NER. The seven genes are named XPA through XI intifiable human familial breast cancers, buble stranded DNA molecules. Minister School (Samplementation group J ancodo proteins, all of which are involved in regals of the proteins all of which are involved in regals of the samplement of and school (Samplement).
Verdamen Vive distinct MMR genes volved in HMPCC two o volved in a small numb- recontentiation of the recontentiation of the method of the second method of the second method of the second method of the second method of the method of the met	are transmitted as mut ther MMR genes—MSI er of cases. m, at least eight distin, odes DNA polymerase all number of cases. of BRCA1 and BRCA2 on DNA or RNA1 from one- oned and at least eleve artner of BRCA1. di nibrinį forms a phys types of patients with Iberts et al., Molecular	The analysis in the human gern line. Tw 45 and PMS2—are involved in a small m 1: genes, seven of which are involved in %- %- hen and a seven of the line and the seven of the invorte, DMA the line and the seven of the invorte in DMA the line and the seven of the invorte in DMA the seven of the seven of the invorte in DMA the seven of the seven of the invorte in DMA the seven of the seven of the invorte in DMA the seven of the seven of the invorte in DMA the seven of the seven of the seven of the invorte in DMA the seven of the seven of the seven of the invorte in DMA the seven of the seven of the seven of the invorte involves of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the seven of the seven of the seven of the involves of the seven of the s	Minister signaling of the Lamge Minister signaling of the Lamge IMB gets-MISS and AU/I - are commonly mitter of cases; a fifth gene, MISS, may also be NER. The seven genes are named XPA through XP mittable builts and the lamge signal built and the lamge signal base signal demonstrated. Complementation group J encode proteins, all of which are involved in regain of proteins. Suffering from X. arland Science, 2002; and from E.R. Fearon, Scien

DNA repair & cancer

Loss or mutagenesis of p53 has the devastating dual consequences of preventing cell cycle arrest due to DNA damage (resulting in accumulation of more DNA damage), and in preventing apoptosis of cells which have accumulated too much DNA damage. These two effects lead directly to genomic instability. This explains why p53 is the most commonly mutated protein in all human tumors.

Name of syndrome	Name of gene	Cancer phenotype	Enzyme or process affected
HNPCC	(4-5 genes) ^a	colonic polyposis	mismatch repair enzymes
XP ^b	(8 genes) ^b	UV-induced skin cancers	nucleotide-excision repair
AT ⁴	ATM	leukemia, lymphoma	response to dsDNA breaks
AT-like disorder ⁴	MRE11	not yet determined	dsDNA repair by NHEJ
Familial breast,	BRCA1, BRCA2 ^d	breast and ovarian carcinomas	homology-directed repair of dsDNA breaks
ovarian cancer Werner	WRN	several cancers	exonuclease and DNA helicase*, replication
Bloom	BLM	solid tumors	DNA helicase, replication
Fanconi anemia	(9 genes) ¹	AML, HNSCC	repair of DNA cross-links and ds breaks
Nijmegen break ^g	NBS	mostly lymphomas	processing of dsDNA breaks, NHEJ
Li-Fraumeni	1P53	multiple cancers	UNA damage alarm protein
Li-Fraumeni	CHK2	colon, breast	kinase signaling DNA damage
ve distinct MMR gene volved in HNPCC: two volved in a small num eroderma pigmentosi eighth gene, XPV, en taxia telangiectasia, s lutant germ-line allele n exonuclease digesti ne genes have been c	s are transmitted as mi other MMR genes—MS ber of cases. um, at least eight distin codes DNA polymerase mail number of cases. es of BRCA1 and BRCA2 DNA or RNA from one loned and at least elevisartner of BRCA1.	rlant alleles in the human germ line. Two He and PMS2—net involved in a small n ct genes, seven of which are involved in η το together may account for 10–20% of idd end inward; a DNA helicase unwinds do en complementation groups have been i	o MMK genes—M3/2 and ML/II—are commonly miber of cases; fifth gene, M2/31, may also be NER. The seven genes are named XPA through XP shtiflable human familial breast cancers. uble-stranded DA molecules. demonstrated. Complementation group J encode